Saturday, 21 January 2017

Calculus by Howard Anton 8th Edition

Q1. Find the area of the region inside the circle r=3sinθ and outside the cardioid r=1+sinθ.

Solution:
Area = ½∫π/2π/6 (3sinθ)2 dθ - ½∫π/2π/6 (1+sinθ)2
= ½ ∫π/2π/6 (9sin2θ) dθ - ½ ∫π/2π/6 (1+sin2θ) dθ
= ½∫π/2π/6 (9sin2θ - (1+sin2θ+2sinθ) dθ                          Simplifying 8sin2θ
= ½π/2π/6 (8sin2θ - 1 - 2sinθ) dθ                                  cos(2θ) = 1 - 2sin²(θ)   
= ½∫π/2π/6 (4 - 4cos(2θ) - 1 - 2sinθ) dθ                          2sin²(θ) = 1 - cos(2θ)  
= ½π/2π/6 (3 – 4cos(2θ) – 2sinθ) dθ                              8sin²(θ) = 4 - 4cos(2θ)
= ½ ∫π/2π/6 3dθ - 4∫π/2π/6 cos(2θ)dθ - 2∫π/2π/6 sinθdθ
= ½ (3θ - 2sin(2θ) + 2cosθ)     (π/6 to π/2)
= ½ [(3π/2 - 3π/6) – 2(sin(2π/2)-sin(2π/6) + 2(cos(π/2)-cos(π/6)]
= ½ (3π/2 - π/2) – 2(0 -  3/2) + 2(0 -  3/2)

= 2 * ½(π +  3/2 -  3/2)
= 2π/2
Area = π



Q2. State the name that describes the following polar curve most precisely: a rose, a line, a circle, a limaçon, a cardioid, a spiral, a lemniscate, or none of these
      r + 2 =2sinθ 

Also sketch and transform the given polar equation to rectangular coordinates 


Solution:

   This is CARDIOID




Polar to rectangle coordinate
r + 2 = 2sinθ


r = 2sinθ – 2

We know that

 x=rcosθ  and   y=rsinθ

Putting value of r in the above equations:

 x=(2sinθ - 2) cosθ         y=(2sinθ - 2)sinθ

 x=2sinθcosθ -2cosθ      y=2sin2θ-2sinθ

 x=sin2θ-2cosθ               y=2sinθ(sinθ-1)

No comments:

Post a Comment